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Knots

▶ Continuous loops in 3-d

▶ Represented with 2-d diagrams



Links

▶ Links consist of two or more knots.



Reidemester Moves

▶ Diagram Equivalence: one can
be turned into another via
Reidemester moves.

The three Reidemester
moves [Wei].



Knot Invariants

▶ A knot invariant I is calculated using crossings of K .

▶ I is a Reidemester move invariant.

Different diagrams of the trefoil [Rub+24].



Skein Relation

▶ A skein relation: finding I (K )
when we know I for “similar
knots.”

▶ Depends upon the invariant.

▶ I (/) := A · I (H) + B · I (1) for
some A,B (not necessarily integers
or numbers).

▶ Base case: I (⃝), where ⃝ is the
unknot (a circle).

Smoothings of the trefoil.



Bracket Polynomial

▶ NOT a knot invariant

▶ Satisfies three rules (below).

▶ Second rule is when we add an unknot.



Bracket Polynomial Skein Relation Example

Bracket polynomial of trefoil [Hes].



Bracket Polynomial Skein Relation Example



Bracket Polynomial Skein Relation Example

Last expression is equivalent to...
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We calculate

▶ ⟨⃝⟩ = 1

▶ ⟨⃝⃝⟩ = −A2 − A−2

▶ ⟨⃝⃝⃝⟩ = (A2 + A−2)2 = A4 + 2 + A−4

Substituting this into our expression, we get
⟨&⟩ = A−7 − A−3 − A5.



Writhe and Jones Polynomial

▶ We assign each knot a “direction.”

▶ The writhe is (# of + crossings
!) - (# of − crossings ").

▶ Define X (L) = (−A3)w(L)⟨L⟩.
▶ The Jones Polynomial J(L) is

defined by substituting A = t−1/4

in X (L).



Khovanov homology

▶ A categorification Kh(L) of the Jones Polynomial
[Kho00][BN02].

▶ (Doubly) graded abelian group

▶ The Kh of the trefoil:
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5 Z
3 Z
1 Z

q/h 0 1 2 3

▶ J(L) is the graded Euler characteristic of Kh(L).

J(L) =
∑
i

∑
j

(−1)j rankKhi ,j(L)qi



Torus Knots

▶ Denoted as T (m, n).

▶ They have m “strands” which twist
around the torus n times.

▶ Coprime m, n.



Example: Trefoil is a Torus Knot

▶ T (2, 3) = T (3, 2) = the trefoil!



Stable Homology of Torus Knots

▶ limn→∞ Kh(T (2, n))q−n+2 exists!

▶ The limit exists for arbitrary # of
strands:

lim
n→∞

Kh(T (m, n))q−(m−1)(n−1)+1

▶ We call these Kh(T (m,∞)).

▶ Gorsky, Oblomkov, and Rasmussen
[GOR13] conjectured
Kh(T (m,∞)) ∼= H•(Wm).
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PIE Conjecture

▶ If we split up those tables horizontally, we can use principal of
inclusion-exclusion to compute rows further up.

▶ Informally, yellow = green - red.
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PIE Conjecture

▶ If we split up those tables horizontally, we can use principal of
inclusion-exclusion to compute rows further up.

▶ Formally, where CL is the Lth row from bottom,

H•(CL)⊕
⌊ n
2 ⌋⊕

k=1

⊕
0<ℓ1<ℓ2<···<ℓ2k≤n−1

H•(CL−2−
∑2k

i=1 ℓi
)

∼=
⌊ n+1

2 ⌋⊕
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⊕
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H•(CL−2−
∑2k−1
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).
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